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Abstract Recent experimental studies of living neural networks reveal that their global ac-
tivation induced by electrical stimulation can be explained using the concept of bootstrap
percolation on a directed random network. The experiment consists in activating externally
an initial random fraction of the neurons and observe the process of firing until its equilib-
rium. The final portion of neurons that are active depends in a non linear way on the initial
fraction. The main result of this paper is a theorem which enables us to find the final propor-
tion of the fired neurons, in the asymptotic case, in the case of random directed graphs with
given node degrees as the model for interacting network. This gives a rigorous mathematical
proof of a phenomena observed by physicists in neural networks.
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1 Introduction

Recent experimental studies of living neural networks [8, 12] reveal that their global ac-
tivation induced by electrical stimulation can be explained using the concept of bootstrap
percolation on a directed random network. The experiment consists in activating externally
an initial random fraction of the neurons and observe the process of firing until its equilib-
rium. The final portion of neurons that are active depends in a non linear way on the initial
fraction. The main result shown by experiments is that there exists a non-zero critical value
for the fraction of initially (i.e., externally) excited neurons beyond which the global activity
jumps to an almost complete activation of the network, while below this critical value the fir-
ing essentially does not spread. The main result of this paper is a theorem which enables us
to find the asymptotic of final proportion of the fired neurons in the case of random directed
graphs with given node degrees as the model for interacting network. This gives a rigor-
ous mathematical proof of a phenomena observed by physicists in neural networks [10].
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In that paper, Cohen et al. find this asymptotic via mean-field assumption and they com-
pare it to simulations and experiment. The validity of the random graph approximation to
metric graphs such as the experimental neural networks is discussed in [22]. Bootstrap per-
colation model has been used in several related applications (see for example [15, 20, 23]).
The model has a rich history in statistical physics, mostly on G = Z

d and finite boxes. The
problem of complete occupation on Z

2 was solved by van Enter in [13]. The existence of a
sharp metastability threshold in d-dimensional lattices was proved by Holroyd [16]. More
recently, bootstrap percolation has been studied on the random regular graph [5], random
graphs with given vertex degrees [3], and also on infinite trees [4, 14].

A neural network is a group of interconnected neurons functioning as a circuit. The
neural network is modeled as a directed graph [8] whose nodes are neurons connected by
synapses. The total number of neurons is n. Let G = (V ,E) be a directed graph on the vertex
set V = [1, . . . , n]. We write i → j if there is a directed link from i to j . The in-degree of
a node i, denoted by din(i) is the number of links that point into the node, i.e., the number
of links j → i for j ∈ V . Similarly the out-degree of a node i, denoted by dout(i), is the
number of links emanating from i, the number of links i → j for j ∈ V .

The adjacency matrix of a directed graph G on n vertices is the n × n matrix A with
coordinates Aij = 1 if j → i and 0 otherwise.

We now give a precise description of the model we consider here. At the beginning of
the process, and as a direct response to the externally applied electrical stimulus, a neuron
has a probability α to fire. Once a neuron has fired, it stays “on” forever. A neuron will be
“on” at time t + 1 if either it was on at time t or if at least � of its incoming nodes were on
at time t , for some � fixed in the model.

We denote by Xt(i) the state of the neuron i at time t : i is on if Xt(i) = 1 and off if
Xt(i) = 0. At each time step t + 1, for the state of the node i we have

Xt+1(i) = Xt(i) + (1 − Xt(i))1

⎛
⎝∑

j

AijXt (j) ≥ �

⎞
⎠ , (1)

where 1(�) denotes the indicator of an event �; this is 1 if � holds and 0 otherwise. The
dynamics is monotonic from the definition. Indeed, since a firing neuron can never turn off,
we have Xt+1(i) ≥ Xt(i). When the algorithm finishes (suppose after n time steps), then
the final state of a node i will be represented by X(i): i.e., X(i) = 1 if node i is active and
X(i) = 0 otherwise. Let us define �(n)(α) as

�(n)(α) := n−1
n∑

j=1

X(j). (2)

In this paper, we are interested to find �(α) the asymptotic value of �(n)(α) when
n → ∞ in the case of random directed graphs with arbitrary degree distribution as the un-
derlying model for the interacting network (see for example [11, 18, 19]). Let us define
P (j, k) to be the probability that a randomly chosen vertex has in-degree j and out-degree
k. Since every oriented edge on a directed graph must leave some vertex and enter another,
P (j, k) must satisfy

∑
j,k(j − k)P (j, k) = 0. The next section describes this model of ran-

dom digraphs.

Notation We consider the asymptotic case when n → ∞ and say that an event holds w.h.p.

(with high probability) if it holds with probability tending to 1 as n → ∞. We shall use
p→
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for convergence in probability as n → ∞. Similarly, we use op and Op in a standard way.
for example, if (Xn) is a sequence of random variables, then Xn = Op(1) means that “Xn is

bounded in probability” and Xn = op(n) means that Xn/n
p→ 0.

1.1 Random Graph Definition

In this section, we describe the model of random directed graphs on n vertices we consider in
this paper. Let d(n)

in = {d(n)
in (i), i = 1, . . . , n} and d(n)

out = {d(n)
out (i), i = 1, . . . , n} be sequences

of non-negative integers such that
∑n

i=1 d
(n)
in (i) = ∑n

i=1 d
(n)
out (i). Sometimes, we simply write

din and dout instead of d
(n)
in and d

(n)
out if n is understood from the context. The configuration

model (CM) on n vertices with degree sequences d(n)
in and d(n)

out is constructed as follows (e.g.
see [7]):

A vertex i is represented by the set of its incoming and outgoing edges that we denote
respectively by Win(i), and Wout(i) with |Win(i)| = din(i), |Wout(i)| = dout(i). Let Win =⋃

i Win(i) and Wout = ⋃
i Wout(i). A configuration is a matching of Win with Wout and we

choose the configuration at random, uniformly over all possible configurations. We denote
the resulted graph by CM(n,d(n)

in ,d(n)
out). Observe that the self-loops may occur, these become

rare as n → ∞ (see e.g. [11] or [17] for more precise results in this direction). It is easy to
see conditional on the multigraph being simple graph, we obtain a uniformly distributed
random graph with the given degree sequence.

We will let n → ∞, and assume that for each n, the given sequences d(n)
in and d(n)

out satisfy
the following regularity conditions:

Condition 1 For each n ∈ N, d(n)
in = {d(n)

in (i), i = 1, . . . , n} and d(n)
out = {d(n)

out (i), i = 1, . . . , n}
are sequences of nonnegative integers such that

∑n

i=1 d
(n)
in (i) = ∑n

i=1 d
(n)
out (i), and, for some

probability distribution P (j, k) independent of n,

1. The degree density condition: the density of vertices of in-degree j and out-degree k

tends to P (j, k). i.e.,

#{i : d(n)
in (i) = j, d(n)

out (i) = k}/n → P (j, k) as n → ∞.

2. The finite expectation property:
∑

j,k jP (j, k) = ∑
j,k kP (j, k) =: λ ∈ (0,∞).

3. The average degree tends to the given value λ:

n∑
i=1

d
(n)
in (i)/n =

n∑
i=1

d(n)
out (i)/n → λ as n → ∞.

In this paper, we work with the model described above, however we have to emphasize
that the results of this work can be as well applied to some other random graphs models
by conditioning on the vertex degrees. For example, for the Erdős-Rényi random graph
G(n,p), where every directed edge is present with probability p, with np → λ ∈ (0,∞),
the assumptions hold with P (j, k) = p(j)p(k), where p(.) is a Poisson distribution with
mean λ:

p(k) = e−λ λk

k! .
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1.2 Statement of Result

In this section, we state the main theorem of this work.
Let Din and Dout be random variables with the distribution P(Din = j,Dout = k) =

P (j, k). We define the function fα(y) as follows

fα(y) := λy − (1 − α)E
[
Dout1 (Bin(Din,1 − y) < �)

]
.

Let y∗ = y∗
α be the largest solution to fα(y) = 0 in [0,1], i.e.,

y∗ = max{y ∈ [0,1] | fα(y) = 0}.
Remark that such y∗ exists because fα(0) ≤ 0, fα(1) = λα > 0 and fα is continuous. The
main result of this paper is the following theorem.

Theorem 2 Consider the random graph CM(n,d(n)
in ,d(n)

out) satisfying Condition 1. Then we
have

1. If y∗ = 0, i.e., if fα(y) > 0 for all y ∈ (0,1], then we have

�(n)(α) = 1 − op(1).

2. If y∗ > 0 and furthermore y∗ is not a local minimum point of fα(y), then

�(n)(α) = 1 − (1 − α)P
(
Bin(Din,1 − y∗) < �

) + op(1).

Remark 3 By Theorem 2, one can observe that when Din and Dout are independent, we have

fα(y) = λ
(
y − (1 − α)P(Bin(Din,1 − y) < �)

)
,

and �(α) := limn→∞ �(n)(α) will depend only on the distribution of in-degree Din.

Remark 4 By Theorem 2, for α < 1, the complete percolation appears only if fα(y) > 0 for
all y ∈ (0,1]. This will happen if Din ≥ � and

α > 1 − inf
y∈(0,1)

λy

E[Dout1(Bin(Din,1 − y) < �)] . (3)

Remark 5 One open question is what will happen when neither Situation 1 nor Situation 2
described in Theorem 2 take place? This will happen only if f ′

α(y
∗) = 0, which is

λ = (1 − α)E
(
DoutDin1(Bin(Din − 1, y∗) = Din − �)

)
. (4)

Let us briefly explain the methods used to derive Theorem 2. The base of our approach
is some standard techniques similar to those used by Balogh and Pittel [5] for the spe-
cial d-regular case problem, and by Cain and Wormald [9] for the k-core problem. This
means we consider the diffusion process on the random configuration model and describe
the dynamics of the diffusion by a Markov chain. Our proof is mainly based on a method
introduced by Wormald in [24] for the analysis of a discrete random process by using differ-
ential equations. However, our model is more general and new difficulties arise in treating
the Markov chain and proving the convergence results. We refer to Sect. 3 for more details.
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Fig. 1 (Color online) The final
fraction of fired neurons as a
function of α and �. Here

P(Din = k) ∼ exp(
−(k−k)2

2σ2 )

with k = 50 and σ = 15

1.3 Simulation

Following [8, 10, 21], we assume a Gaussian distribution for in-degrees

P(Din = k) ∼ exp

(−(k − k)2

2σ 2

)
,

with k = 50 and σ = 15 based on the experimental results. Figure 1 shows the three dimen-
sional representation of the final fraction of fired neurons, i.e., �(α) as a function of α and
�. This shows that both parameter � and α have transition values, αc and �c , where the
solution changes qualitatively.

Let us assume that � is fixed. Then there exists a critical value for the fraction of initially
excited neurons (i.e., α) beyond which the global activity jumps to an almost complete
activation of the network while below this critical value the firing essentially does not spread.
Indeed as we can see in Fig. 2, on the left-hand side, the map α → �(α) exhibits a point of
discontinuity. Let us define the function g(y) as

g(y) := 1 − λy

E[Dout1(Bin(Din,1 − y) < �)] , (5)

such that y∗ = y∗(α) can be characterized as

y∗(α) = max{y : y ∈ [0,1], g(y) = α}. (6)

The right-hand side of Fig. 2 represents the function g(y). As we can see, for α < αc , the
equation g(y) = α has three solutions in [0,1], while for α > αc it has only one solution. In
this case αc can be characterized as a local maximum point of g(y) in (0,1).

1.4 Relation to Bootstrap Percolation in Random Regular Graphs

Bootstrap percolation in the random regular graph (non directed) G(n,d) with fixed vertex
degree d was studied by Balogh and Pittel in [5]. Let Af be the final set of active vertices.
The main theorem of [5] is the following
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Fig. 2 (Color online) Functions �(α) and g(y) in bootstrap percolation model. Here P(Din = k) ∼
exp(

−(k−k)2

2σ2 ) with k = 50, σ = 15 and � = 25

Theorem 6 (Balogh-Pittel [5]) Let � ≤ d − 1 and α ∈ [0,1] and consider the bootstrap
percolation in the random d-regular graph G(n,d) in which each vertex is initially active
independently at random with probability α and the threshold is �. Let αc be defined as
follows

αc := 1 − inf
0<y≤1

y

P(Bin(d − 1,1 − y) ≤ � − 1)
.

We have

(i) If α > αc , then |Af | = n − op(n).
(ii) If α < αc , then w.h.p. a positive proportion of the vertices remain inactive. More pre-

cisely, if y∗ = y∗(α) is the largest y ≤ 1 such that

P(Bin(d − 1,1 − y) ≤ � − 1)/y = (1 − α)−1,

then

|Af |
n

p→ 1 − (1 − α)P( Bin(d,1 − y∗) ≤ � − 1 ) < 1.

In this case, Balogh and Pittel [5] have also studied the threshold in greater detail by
allowing α to depend on n. They show

• if n1/2(α(n) − αc) → ∞, then w.h.p. |Af | = n;
• if n1/2(αc − α(n)) → ∞, then w.h.p. |Af | < n and furthermore

|Af | = n
(
1 − (1 − α(n))P

(
Bin(d,1 − y∗) ≤ � − 1

)) + Op(n1/2(αc − α(n))−1/2).

It would be interesting to generalize these results to our case. Note that Balogh and Pittel [5]
do not use Wormald’s theorem. Indeed they analyze directly the system of differential equa-
tions via exponential supermartingales by using its integrals to show that the percolation
process undergoes relatively small fluctuations around the deterministic trajectory.

1.5 Organization of the Paper

In the next section we describe an approximation to the local structure of the graph by an
appropriate branching process and give a heuristic argument which leads quickly to derive
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our result. Bootstrap Percolation is studied in detail in Sect. 3. We describe the dynamics of
bootstrap percolation as a Markov chain in Sect. 3.1. The proof of out main theorem, The-
orem 2, is based on the use of differential equations for solving discrete random processes.
This was first introduced by Wormald [24]. We briefly discuss his method in Sect. 3.2. The
proof of our main result is given in Sect. 3.3.

2 Branching Process Approximation

In this section we describe an approximation to the local structure of the graph by an ap-
propriate branching process and give a heuristic argument which leads quickly to derive
our Theorem 2. We define P ∗(j, k) the size biased probability mass function corresponding
to P , by

P ∗(j, k) := kP (j, k)/λ.

Indeed P ∗(j, k) is the probability that an incoming half-edge matches to a node with in-
degree j and out-degree k. This occurs because vertices with out-degree k are k times as
likely to be chosen for connections, and the outgoing edge that brings us to the new vertex
uses up one of its in-degrees. Then we can approximate the local structure of a randomly
chosen vertex by following branching process (see e.g. [2, 6]): with probability P (j, k) the
root Ø has in-degree equals to j and out-degree equals to k. Each of these vertices has in-
degree equals to j and out-degree equals to k with probability P ∗(j, k), and so on. Let us
denote this branching process by X . Then the tree X describes the local structure of the
graph CM(n,d(n)

in ,d(n)
out) as n tends to infinity. We now consider the bootstrap percolation

model in the infinite tree X .
We encode the initial fired neurons by a vector χ , where χi = 1 if the node i is fired

and χi = 0 otherwise. The random variable χi is Bernoulli with parameter α independent of
everything else. We have

Xt+1(Ø) = 1 − (1 − χØ)1

(∑
i→Ø

Xt(i) < �)

)
. (7)

Thanks to the tree structure, the random variables (Xt(i), i → Ø) are independent of each
other and identically distributed. Furthermore for i 
= Ø, we have:

Xt+1(i) = 1 − (1 − χi)1

⎛
⎝∑

j→i

Xt (j) < �)

⎞
⎠ . (8)

Let D∗
in be a random variable with the distribution

P(D∗
in = j) =

∑
k

P ∗(j, k) =
∑

k

kP (j, k)

λ
.

In view of (8), it is natural to introduce the following Recursive Distributional Equation
(RDE):

X
d= 1 − (1 − χ)1

⎛
⎝

D∗
in∑

l=1

X(l) < �

⎞
⎠ , (9)
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where χ is a Bernoulli random variable with parameter α, X and X(l) are identically distrib-
uted and all random variables are independent of each others. RDE for the process X plays
a similar role as the equation μ = Kμ for the stationary distribution of a Markov chain with
kernel K , see [1].

Let y = P [X = 0], where the distribution of X solves the RDE (9). By taking expectation
in (9), we get

1 − y = 1 − (1 − α)
∑

j

∑
k

kP (j, k)

λ
P(Bin(j,1 − y) < �)

= 1 − (1 − α)
E[Dout1(Bin(Din,1 − y) < �)]

λ
.

We have fα(y) = 0. Furthermore by 7, the state of the root follows:

X(Ø)
d= 1 − (1 − χ)1

(
Din∑
l=1

X(l) < �

)
,

where Xl are i.i.d. and their distribution solves the RDE (9), i.e., fα(y) = 0. Taking the
expectation gives:

E[X(Ø)] = 1 − (1 − α)P (Bin(Din,1 − y) < �) .

3 Bootstrap Percolation in CM(n,d(n)
in ,d(n)

out)

This section is devoted to the proof of Theorem 2.

3.1 The Markov Chain

We first describe the dynamics of the bootstrap percolation as a Markov chain, which
is perfectly tailored for asymptotic study. We consider the bootstrap percolation on
CM(n,d(n)

in ,d(n)
out). Let m(n) := ∑n

i=1 d
(n)
in (i) denote the number of incoming edges in the

graph.
At a given time step t neurons are partitioned into fired F(t) and non-fired N(t). We

further partition the class of non-fired nodes according to their in- and out-degree N(t) =⋃
j,k Nj,k(t). At time zero, F(0) contains the initial set of fired neurons. We look at the

system in discrete time. At time step t + 1 we have

F(t + 1) = F(t) ∪ {v ∈ N(t) such that |F(t) ∩ {w ∈ V,Avw = 1}| ≥ �} .

We now assume the configuration model algorithm described in Sect. 1.1. One can ob-
serve that the uniform matching which constructs the graph can be obtained sequentially:
choose an outgoing half edge according to any rule (random or deterministic) and then
choose the corresponding incoming half edge uniformly over the unmatched incoming half
edges.

We now use a different approach for the bootstrap percolation dynamics which results in
a simpler Markov chain description of the system. At each step we have one interaction only
between two neurons, yielding at least one fired. Our processes at each step is as follows:
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• Choose an outgoing edge of a fired neuron i;
• Identify its partner j (i.e. by construction of the random graph in the configuration model,

the partner is given by choosing an incoming edge randomly among all available incoming
edges);

• Delete both edges. If j is currently non-fired and it is the �-th deleted incoming edge
from j , then j fires.

Our system is described in terms of

• N
(n)
j,k,θ (t), 0 ≤ θ < �, the number of non-fired neurons with in-degree j , out-degree k, and

θ incoming edges from fired neurons at time t ,
• F

(n)
j,k (t): the number of fired neurons with in-degree j and out-degree k at time t ,

• F (n)(t): the number of fired neurons at time t ,
• N

(n)
in (t): the number of incoming edges belonging to non-fired neurons at time t ,

• F
(n)
in (t): the number of incoming edges belonging to fired neurons at t ,

• F
(n)
out (t): the number of outgoing edges belonging to fired neurons at t .

Because at each step we delete one incoming edge and the number of incoming edges at
time 0 is m(n), the number of existing incoming edges at time t will be m(n) − t and we
have

F
(n)
in (t) + N

(n)
in (t) = m(n) − t.

It is easy to see that the following identities hold:

N
(n)
in (t) =

∑
j,k

∑
θ<�

(j − θ)N
(n)
j,k,θ (t), (10)

F (n)
out (t) =

∑
k,j

kF
(n)
j,k (t) − t, (11)

F (n)(t) =
∑
k,j

F
(n)
j,k (t). (12)

The process will finish at the stopping time T
(n)
f which is the first time t ∈ N where

F
(n)
out (t) = 0. The final number of fired neurons will be F (n)(T

(n)
f ). By definition of our

process {N(n)
j,k,θ ,F

(n)
j,k }θ,j,k represents a Markov chain. We write the transition probabilities

of the Markov chain. There are three possibilities for the B , the partner of an outgoing edge
of a fired neuron A.

1. B is fired, the next state is

N
(n)
j,k,θ (t + 1) = N

(n)
j,k,θ (t) (0 ≤ θ < �),

F
(n)
j,k (t + 1) = F

(n)
j,k (t).

2. B is non-fired of in-degree j and out-degree k, and this is the (θ +1)-th deleted incoming

edge and θ + 1 < �. The probability of this event is
(j−θ)N

(n)
j,k,θ

m(n)−t
. The next state is

N
(n)
j,k,θ (t + 1) = N

(n)
j,k,θ (t) − 1,

N
(n)

j,k,θ+1(t + 1) = N
(n)

j,k,θ+1(t) + 1,
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N
(n)
j,k,i (t + 1) = N

(n)
j,k,i (t + 1) (0 ≤ i < �, i 
= θ, θ + 1),

F
(n)
j,k (t + 1) = F

(n)
j,k (t).

3. B is non-fired of in-degree j and out-degree k, and this is the �-th deleted incoming

edge. Then j ≥ � and with probability
(j−�+1)N

(n)
j,k,�−1(t)

m(n)−t
, we have

N
(n)
j,k,θ (t + 1) = N

(n)
j,k,θ (t) (0 ≤ θ < � − 1),

N
(n)

j,k,�−1(t + 1) = N
(n)

j,k,�−1(t) − 1,

F
(n)
j,k (t + 1) = F

(n)
j,k (t) + 1.

Let Pt denote the pairing generated by time t , i.e., Pt = {eout, ein} is the set of edges
picked before time t . By averaging over the possible transitions, we obtain the following
equations for expectation of (N

(n)
j,k,θ (t + 1),F

(n)
j,k (t + 1)) conditioned on Pt :

E
[
N

(n)

j,k,0(t + 1) − N
(n)

j,k,0(t)|Pt

] = −jN
(n)

j,k,0(t)

m(n) − t
,

E
[
N

(n)
j,k,θ (t + 1) − N

(n)
j,k,θ (t)|Pt

]

= (j − θ + 1)N
(n)

j,k,θ−1(t) − (j − θ)N
(n)
j,k,θ (t)

m(n) − t
(0 < θ < �),

E
[
F

(n)
j,k (t + 1) − F

(n)
j,k (t)|Pt

] = (j − � + 1)N
(n)

j,k,�−1(t)

m(n) − t
.

We will show in Sect. 3.3 that the trajectory of these variables throughout the algorithm is
a.a.s. (asymptotically almost surely, as n → ∞ ) close to the solution of the deterministic
differential equations suggested by these equations.

3.2 Wormald’s Theorem

In this section we briefly present a method introduced by Wormald in [24] for the analysis of
a discrete random process by using differential equations. In particular we recall a general
purpose theorem for the use of this method. This method has been used to analyze several
kinds of algorithms on random graphs and random regular graphs (e.g., [9, 18, 25]).

Recall that a function f (u1, . . . , uj ) satisfies a Lipschitz condition on D ∈ R
j if a con-

stant L > 0 exists with the property that

|f (u1, . . . , uj ) − f (v1, . . . , vj )| ≤ L max
1≤i≤j

|ui − vi |

for all (u1, . . . , uj ) and (v1, . . . ., vj ) in D. For variables Y1, . . . , Yb and for D ∈ R
b+1, the

stopping time TD(Y1, . . . , Yb) is defined to be the minimum t such that

(t/n;Y1(t)/n, . . . , Yb(t)/n) /∈ D.

This is written as TD when Y1, . . . , Yb are understood from the context.
The following theorem is the Theorem 5.1 of [25]. In it, “uniformly” refers to the conver-

gence implicit in the o() terms. Hypothesis (1) ensures that Yt does not change too quickly
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throughout the process. Hypothesis (2) tells us what we expect for the rate of change to be,
and property (3) ensures that this rate does not change too quickly.

Theorem 7 (Wormald [25]) Let b be given (b is the number of variables). For 1 ≤ l ≤ b,
suppose Y

(n)
l (t) is a sequence of real-valued random variables, such that 0 ≤ Y

(n)
l (t) ≤ Cn

for some constant C, and Ht be the history of the sequence, i.e. the sequence {Y (n)
j (k), 0 ≤

j ≤ b, 0 ≤ k ≤ t}.
Suppose also that for some bounded connected open set D ⊆ R

b+1 containing the inter-
section of {(t, z1, . . . , zb) : t ≥ 0} with some neighborhood of

{(0, z1, . . . , zb) : P(Y
(n)
l (0) = zln,1 ≤ l ≤ b) 
= 0 for some n},

the following three conditions are verified:

1. (Boundedness) For some function β = β(n) ≥ 1 and for all t < TD

max
1≤l≤b

|Y (n)
l (t + 1) − Y

(n)
l (t)| ≤ β;

2. (Trend) For some function λ = λ1(n) = o(1) and for all l ≤ b and t < TD

|E[Y (n)
l (t + 1) − Y

(n)
l (t)|Ht ] − fl(t/n,Y

(n)

1 (t)/n, . . . , Y
(n)
b (t)/n)| ≤ λ1;

3. (Lipschitz) For each l the function fl is continuous and satisfies a Lipschitz condition on
D with all Lipschitz constants uniformly bounded.

Then the following holds

(a) For (0, ẑ1, . . . , ẑb) ∈ D, the system of differential equations

dzl

ds
= fl(s, z1, . . . , zl), l = 1, . . . , b,

has a unique solution in D, zl : R → R for l = 1, . . . , b, which passes through
zl(0) = ẑl , l = 1, . . . , b, and which extends to points arbitrarily close to the boundary
of D.

(b) Let λ > λ1 with λ = o(1). For a sufficiently large constant C, with probability
1 − O(

bβ

λ
exp(− nλ3

β3 )), we have

Y
(n)
l (t) = nzl(t/n) + O(λn)

uniformly for 0 ≤ t ≤ σn and for each l. Here zl(t) is the solution in (a) with
ẑl = Y

(n)
l (0)/n, and σ = σ(n) is the supremum of those s to which the solution can

be extended before reaching within l∞-distance Cλ of the boundary of D.

We will also use the following corollary of the above theorem, which is namely Theo-
rem 6.1 of [25]. This theorem states that, as long as Condition 3 holds in D, the solution of
the system of equations above can be extended beyond the boundary of D̂, into D.

Corollary 8 For any set D̂ ⊆ R
b+1, let TD̂ = TD̂(Y

(n)

1 , . . . , Y
(n)
b ) be the minimum t such that

( t
n
,

Y
(n)
1 (t)

n
, . . . ,

Y
(n)
b

(t)

n
) /∈ D̂ (the stopping time). Assume in addition that the first two hypothe-

ses of Theorem 7 are verified but only within the restricted range t < TD̂ of t . Then the con-
clusions of the theorem hold as before, after replacing 0 ≤ t ≤ σn by 0 ≤ t ≤ min{σn,TD̂}.
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Proof For 1 ≤ j ≤ b , define random variables Ŷ
(n)
j by

Ŷ
(n)
j (t + 1) =

{
Y

(n)
j (t + 1), if t < TD̂

Y
(n)
j (t) + fj (t/n,Y

(n)

1 (t)/n, . . . , Y
(n)
b (t)/n), otherwise

for all t ≥ 0. Then the Ŷ
(n)
j satisfy the hypotheses of Theorem 7, and so the corollary follows

as Ŷ
(n)
j (t) = Y

(n)
j (t) for 0 ≤ t < TD̂ . �

3.3 Proof of Theorem 2

The proof of Theorem 2 is mainly based on Theorem 7. Indeed we will apply this theorem
to show that the trajectory of N

(n)
j,k,θ (t) and F

(n)
j,k (t) throughout the algorithm is a.a.s. close to

the solution of the deterministic differential equations suggested by these equations.
Let (DE) be the following system of differential equations:

(nj,k,0)
′(τ ) = −jnj,k,0(τ )

λ − τ
,

(nj,k,θ )
′(τ ) = (j − θ + 1)nj,k,θ−1(τ ) − (j − θ)nj,k,θ (τ )

λ − τ
(for 0 < θ < � ),

(fj,k)
′(τ ) = (j − � + 1)nj,k,�−1(τ )

λ − τ
,

with τ ∈ [0, λ), and initial conditions

nj,k,0 = (1 − α)P (j, k), nj,k,θ (0) = 0 for 0 < θ < �, and fj,k(0) = αP (j, k).

Lemma 9 The solution of the system of differential equations (DE) is

nj,k,θ (τ ) = P (j, k)(1 − α)

(
j

i

)
yj−θ (1 − y)i,

fj,k(τ ) = P (j, k)
[
α + (1 − α)P(Bin(j,1 − y) ≥ �)

]
,

where y = (1 − τ/λ).

Proof Let u = u(τ) = − ln(λ−τ). Then u(0) = − ln(λ), u is strictly monotone and so is the
inverse function τ = τ(u). We write the system of differential equations (DE) with respect
to u:

(nj,k,0)
′(u) = −jnj,k,0(u),

(nj,k,θ )
′(u) = (j − θ + 1)nj,k,θ−1(u) − (j − θ)nj,k,θ (u).

Then using

d

du
(nj,k,θ (u)e(j−θ−1)(u−u(0))) = e(j−θ−1)(u−u(0))(j − θ)nj,k,θ (u),

and by induction, we find

nj,k,θ (u) = e−(j−θ)(u−u(0))

θ∑
r=0

(
j − r

i − r

)(
1 − e−(u−u(0))

)i−r
nj,k,θ (u(0)).
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By going back to τ , we have

nj,k,θ (τ ) = yd−j

θ∑
r=0

nj,k,θ (0)

(
j − r

i − r

)
(1 − y)i−r , y = (1 − τ/λ),

which gives

nj,k,θ (τ ) = P (j, k)(1 − α)

(
j

i

)
yj−θ (1 − y)i .

We have

(fj,k)
′(y) = −λ(fj,k)

′(τ )

= −λ
(j − � + 1)nj,k,�−1

λy

= −(j − � + 1)P (j, k)(1 − α)

(
j

� − 1

)
yj−�(1 − y)�−1

= −P (j, k)(1 − α)jP(Bin(j − 1,1 − y) = � − 1).

Then using the fact that

∂

∂p
P(Bin(N,p) > K) = NP(Bin(N − 1,p) = K),

and by initial condition we have

fj,k = P (j, k)
[
α + (1 − α)P(Bin(j,1 − y) ≥ �)

]
. �

Let us fix an arbitrary constant ε > 0. We define the operator ∧ as

x ∧ y = max(x, y).

By Condition 1, we know

λ =
∑
j,k

kP (j, k) =
∑

j

P (j, k) ∈ (0,∞).

Then, there exist a constant Kε , such that

∑
k≥Kε

∑
j

kP (j, k) +
∑
j≥Kε

∑
k

jP (j, k) < ε/2,

which implies
∑

j∧k≥Kε

kP (j, k) < ε/2.

We also have by Lemma 9

fj,k(τ ) = P (j, k)
[
α + (1 − α)P(Bin(j,1 − y) ≥ �)

] ≤ P (j, k).
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Let N(n)(j, k) denote the number of vertices with in-degree j and out-degree k at time 0.
Again, by Condition 1,

∑
j,k

kN(n)(j, k)/n =
∑
j,k

jN(n)(j, k)/n → λ ∈ (0,∞), as n → ∞.

Therefore, for n large enough,

∑
j∧k≥Kε

kN(n)(j, k)/n < ε/2,

and then
∑

j∧k≥Kε

k

∣∣∣F (n)
j,k (t)/n − fj,k(t/n)

∣∣∣ ≤
∑

j∧k≥Kε

k
(
F

(n)
j,k (t)/n + fj,k(t/n)

)

≤
∑

j∧k≥Kε

k
(
N(n)(j, k)/n + P (j, k)

)
< ε. (13)

Let us define

fout(τ ) :=
∑
k,j

kfj,k(τ ) − τ , and (14)

f (τ) =
∑
k,j

kfj,k(τ ). (15)

Then by Lemma 9 we have

fout(τ ) =
∑
k,j

kP (j, k)
[
α + (1 − α)P(Bin(j,1 − y) ≥ �)

] − τ

= λα +
∑
k,j

kP (j, k)(1 − α)P(Bin(j,1 − y) ≥ �) − τ

= λy − λ(1 − α) + (1 − α)

E
[
Dout1 (Bin(Din,1 − y) ≥ �)

]

= fα(y),

where y = (1 − τ/λ).
For ε > 0, we define b(ε) := K2

ε (� + 1), and the domain D(ε) as

D(ε) =
{(

τ, {nj,k,θ , fj,k}θ<�,1≤j,k≤Kε

) ∈ R
b(ε)+1 : −ε < nj,k,θ < 1, −ε < fj,k < 1,

− ε < τ < λ − ε,
∑

j∧k≤Kε

kfj,k − τ > 0

}
.

Let T
(n)
D be the stopping time for D which is the first time t when

(
t/n, {N(n)

j,k,θ (t/n)}, {F (n)
j,k (t/n)}) /∈ D.
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We will use Theorem 7. The domain D(ε) is a bounded open set which contains all initial
values of variables which may happen with positive probability. Each variable is bounded by
a constant times n. By the definition of our process, the Boundedness Hypothesis is satisfied
with β(n) = 1. Trend Hypothesis is satisfied by some λ1(n) = O(1/n). Finally the third
condition (Lipschitz Hypothesis) of the theorem is also satisfied since λ − τ is bounded
away from zero. Note that for 0 < θ < �; we have N

(n)
j,k,θ (0)/n = 0, and by Condition 1 and

by definition:

N
(n)

j,k,0(0)/n
p→ (1 − α)P (j, k), F

(n)
j,k (0)/n

p→ αP (j, k).

Then we set λ = O(n−1/4) > λ1. The conclusion of Theorem 7 now gives

N
(n)
j,k,θ (t)/n = nj,k,θ (t/n) + O(n3/4), (16)

F
(n)
j,k (t)/n = fj,k(t/n) + O(n3/4), (17)

with probability 1 − O(n7/4 exp(−n1/4)) uniformly for all t ≤ nσ , where σ = σ(n) is the
supremum of those τ for which the solution of the differential equations (DE) can be ex-
tended before reaching within l∞-distance Cn−1/4 of the boundary of D(ε).

Then we have by (13) and (17)

sup
t≤nσ

∣∣F (n)
out (t)/n − fout(t/n)

∣∣ ≤ sup
t≤nσ

∑
j,k

k

∣∣∣F (n)
j,k (t)/n − fj,k(t/n)

∣∣∣

≤ ε + sup
t≤nσ

∑
j∧k≤Kε

k

∣∣∣F (n)
j,k (t)/n − fj,k(t/n)

∣∣∣ = ε + op(1),

and by the same argument

sup
t≤nσ

∣∣F (n)(t)/n − f (t/n)
∣∣ ≤ sup

t≤nσ

∑
j,k

k

∣∣∣F (n)
j,k (t)/n − fj,k(t/n)

∣∣∣ ≤ ε + op(1).

To analyze σ , we need to determine which constraint is violated when the solution
reaches the boundary of D(ε). It cannot be the first two constraints, because (17) must
give asymptotically feasible values of N

(n)
j,k,θ and F

(n)
j,k up until the boundary is approached.

It remains to determine which of the last two constraints is violated when τ = σ .
First assume fα(y) > 0 for all y ∈ (0,1], i.e., y∗ = 0. Then we have fout(τ ) > 0 for all

τ ∈ [0, λ). Now note that if
∑

j∧k≤Kε
kfj,k(τ ) − τ becomes zero, by definition of Kε , we

will have fout(τ ) < ε. Then by choosing ε small enough, we conclude that in this case for
any ε ′ > 0, and for n large enough, we will have w.h.p. T

(n)
f > n(λ − ε ′), which implies

�(n)(α) = 1 − op(1).
Consider now y∗ > 0, and suppose further that y∗ is not a local minimum point of fα(y).

This means fα(y) < 0 for some interval (y∗ − a, y∗). We infer that the first constraint is
violated at time τ̂ ∼ λ(1 − y∗). We apply Corollary 8 with D̂ the domain D(ε) defined
above, and the domain D replaced by D′(ε), which is the same as D except that the last
constraint is omitted:

D′(ε) =
{(

τ, {nj,k,θ , fj,k}θ<�,1≤j,k≤Kε

)
∈ R

b(ε)+1 : −ε < nj,k,θ < 1, −ε < fj,k < 1,

− ε < τ < λ − ε
}
.
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This gives us the convergence up to the point where the solution leaves D′(ε) or when∑
j∧k<Kε

kF
(n)
j,k − t > 0 is violated. Since fout(τ ) begins to go negative after τ̂ , it follows

that
∑

j∧k<Kε
kF

(n)
j,k − t > 0 must be violated almost asymptotic surely. Then it is easy to

conclude (by choosing ε small enough) that in this case for any ε′ > 0, and for n large

enough, we will have w.h.p. T (n)
f /n ∈ (τ̂ −ε ′, τ̂ +ε ′), which gives T

(n)
f /n

p→ τ̂ . We conclude

F (n)(T
(n)
f ) = nf (τ̂ ) + op(n)

= n
(
1 − (1 − α)E

[
1

(
Bin(Din,1 − y∗) < �

)]) + op(n),

which completes the proof.
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